Semimetallic dense hydrogen above 260 GPa.
نویسندگان
چکیده
Being the lightest and the most abundant element in the universe, hydrogen is fascinating to physicists. In particular, the conditions of its metallization associated with a possible superconducting state at high temperature have been a matter of much debate in the scientific community, and progress in this field is strongly correlated with the advancements in theoretical methods and experimental techniques. Recently, the existence of hydrogen in a metallic state was reported experimentally at room temperature under a pressure of 260-270 GPa, but was shortly after that disputed in the light of more experiments, finding either a semimetal or a transition to an other phase. With the aim to reconcile the different interpretations proposed, we propose by combining several computational techniques, such as density functional theory and the GW approximation, that phase III at ambient temperature of hydrogen is the Cmca-12 phase, which becomes a semimetal at 260 GPa . From phonon calculations, we demonstrate it to be dynamically stable; calculated electron-phonon coupling is rather weak and therefore this phase is not expected to be a high-temperature superconductor.
منابع مشابه
Topological Surface States in Dense Solid Hydrogen.
Metallization of dense hydrogen and associated possible high-temperature superconductivity represents one of the key problems of physics. Recent theoretical studies indicate that before becoming a good metal, compressed solid hydrogen passes through a semimetallic stage. We show that such semimetallic phases predicted to be the most stable at multimegabar (∼300 GPa) pressures are not conventio...
متن کاملAtomic Diffusion in Solid Molecular Hydrogen
We performed ab initio molecular dynamics simulations of the C2c and Cmca-12 phases of hydrogen at pressures from 210 to 350 GPa. These phases were predicted to be stable at 0 K and pressures above 200 GPa. However, systematic studies of temperature impact on properties of these phases have not been performed so far. Filling this gap, we observed that on temperature increase diffusion sets in t...
متن کاملEquation of State of Dense Hydrogen in Limiting Cases
At higher densities between 0.3 and 0.6 g/cm hydrogen undergoes a transition from a neutral uid to a plasma. Shock wave experiments probe this region along Hugoniot curves. New Z-pinch data [1] are in contradiction to laser induced shock-wave data [2] above 50 GPa. Theoretical descriptions of hydrogen show coincidence with either set of data. Fluid Variational Theory (FVT) describes the neutral...
متن کاملRaman spectroscopy of hot dense hydrogen.
High P-T Raman measurements of solid and fluid hydrogen to above 1100 K at 70 GPa and to above 650 K in 150 GPa range, conditions previously inaccessible by static compression experiments, provide new insight into the behavior of the material under extreme conditions. The data give a direct measure of the melting curve that extends previous optical investigations by up to a factor of 4 in press...
متن کاملPressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity
The high pressure structures, metallization, and superconductivity of recently synthesized H2-containing compounds (H2S)2H2 are elucidated by ab initio calculations. The ordered crystal structure with P1 symmetry is determined, supported by the good agreement between theoretical and experimental X-ray diffraction data, equation of states, and Raman spectra. The Cccm structure is favorable with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 25 شماره
صفحات -
تاریخ انتشار 2012